妖精現実

⚠魔法使い出没注意


最新記事 時間を止めてイタズラできたら楽しいか(2024-04-21)

遊びの数論 ] [ 数学・プログラミング ]
天文・暦 ] [ シリア語・Unicode・詩 ] [ ジョーク ]
漫画・アニメ ] [ 字幕 ] [ 哲学・ファンタジー ]
チラ裏(雑記) ] [ 主な新着コンテンツ ]

***

2024-06-16 3次方程式の手計算について トリッキーなトレードオフ

y3 − 112y − 448 = 0 を例に、幾つかのアプローチについて、その意義や問題点を考えてみたい。

この3次方程式は、 y = 4u と置いて両辺を 43 で割ると、 u3 − 7u − 7 = 0 になる。「この形はシンプルで良い」と思える。ところが、実際には y = 2u と置いて両辺を 23 で割った u3 − 28u − 56 = 0 の方が扱いやすい。しかし、そのどちらも最善とは言い切れず、 y = (2/3)u と置いて両辺を (3/2)3 倍した u3 − 252u − 1512 = 0 がある意味ベストなのだ…。

→ 続きを読む

⁂

2024-06-15 円周7等分点・14等分点のタンジェント tan (π/7) など

tan (π/7), tan (2π/7), tan (3π/7) の値(根号表現)を求める。

→ 続きを読む

⁂

2024-06-14 tan 15°, tan 22.5°, tan 36° など

tan 15° = 2 − 3
tan 22.5° = 2 − 1
tan 36° = (5 − 25) = 5 tan 18°

→ 続きを読む

⁂

2024-06-12 40°, 50°, 70°, 80° の tan と sin

θ = 40°, 50°, …, 80° の tan は、次のような意味でそれぞれ 4 sin θ と相性がいい:
  tan 40° + tan 60° = 4 sin 40°
  tan 50° tan 60° = 4 sin 50° − 1
  tan 60° + tan 60° = 4 sin 60°
  tan 70° tan 60° = 4 sin 70° + 1
  tan 80° − tan 60° = 4 sin 80°

→ 続きを読む

⁂

 2024-06-11 Linux の Live OS 気軽にいろいろ試せる

Windows については、あまり良い評判を聞かない。全面的に捨てないまでも、 Linux 系の OS をちょっと試してみることは、良いアイデアだろう。イメージ(1~3ギガくらいのファイル)をダウンロードして USB メモリーに書き込み、そこからブートすると、Live OS として Linux が立ち上がる。

画像: Linux Mint (Xfce) のデスクトップ

Linux といっても、数え切れないくらい種類がある。具体的に、どれを使えばいいのだろう? 最初から答えを決めず、実際にいろいろ試してみて、気に入ったのを使えばいいかと。用途・好みは人それぞれなので…

→ 続きを読む

⁂

2024-06-10 「ナイルの城」橋 カイロの風景

Qasr al-Nil 橋。ジョジョ3部で DIO がやられた場所。

JPEG画像1

最終話の冒頭、「こちらスピードワゴン財団、第2号車。ただいま AL NIL通りを北へ移動中。 DIOの死体は回収した」として、実在の通りの名前(Qasr al-Nil; Qasr el-Nil とも)の一部が言及されている。通信相手からは「DIOの肉体は日の出をあびるまでは生きている…注意せよ!」と警告が返ってくる。

→ 続きを読む

⁂

2024-06-09 4個の tan を含むきれいな式 透明に

tan 10° tan 30° tan 50° tan 70° = 1/3

tan 20° tan 40° tan 60° tan 80° = 3

有無を言わさぬ美しさ!

→ 続きを読む

⁂

2024-06-07 tan 10° に関連する問題

問題 tan 70° = tan 20° + 2 tan 40° + 4 tan 10° を証明せよ。

一見、簡単な計算問題だが、簡単なやり方が分からない。強引でもよければ、どうにでもなりそうだが…

→ 続きを読む

⁂

2024-06-06 tan の倍角公式のきれいな導出 複素数の積

tan の多倍角の公式について、arctan の倍数の式とセットで、少し違う観点から整理してみたい。「複素数の2乗・3乗・4乗…の挙動」という重要な問題とも関連する。

→ 続きを読む

⁂

2024-06-04 円周13等分に関連する4次式

円周13等分に関連して、ある種の強引なアプローチについて記す。

→ 続きを読む

⁂

2024-06-03 arctan 1 + arctan 2 + arctan 3 = π 三角形の内心

PNG画像: 3-4-5の直角三角形。第一式 arctan 1 + arctan 2 + arctan 3 = π

第二式 arctan 1 + arctan (1/2) + arctan (1/3) = π/2

これら二つの面白い式については、いろいろな証明が可能。以下の幾何学的証明は、明快でエレガントだと思われる。辺の長さが 3, 4, 5 の直角三角形 ABC を考える(AB = 3, AC = 4, BC = 5)。 辺 AB 上で A からの距離 1 の点を P、辺 AC 上で A からの距離 1 の点を R として、一辺 1 の正方形 APQR を描き、 △BQP ≡ △BQS になるように辺 BC 上の点 S を選ぶ。

もちろん a = ∠PQA = 45° = π/4。 45° の傾きでは、水平(横)に 1 進むごとに垂直(縦)に 1 上昇するので、 tan a = tan (π/4) = 1、言い換えれば arctan 1 = π/4 = a

今、 BQ を斜辺とする直角三角形 BQP を考え ∠BQP = d とすると、この斜辺の傾きでは(Q から P へ)横に 1 進むごとに垂直に 2 上昇するので、 tan d = 2 つまり arctan 2 = d。同様に CQ を斜辺とする △CQS を考え ∠CQS = e とすると tan e = 3 つまり arctan 3 = e。

a + a + d + d + e + e = 360° = 2π は Q の周りを一周する角度。その半分は:
  π = a + d + e = arctan 1 + arctan 2 + arctan 3

→ 続きを読む

⁂

2024-06-02 円周率を8桁計算 お遊び

arctan の加法定理 arctan u + arctan v = arctan ((u + v)/(1 − uv)) を使って、円周率を8桁ほど計算してみる(Machin の公式)。

→ 続きを読む

⁂

2024-06-01 円周率の Machin の公式

x4, y4 はそれぞれ x, y と比べて絶対値が4乗で、偏角が4倍。この「偏角」の部分は、円周率の計算の Machin の公式とも少し関連する。

→ 続きを読む

⁂

2024-05-31 フェルマーの最終定理もどき x4 + y4 = z4

(I) 二つの数 x, y の和を 1 とする: x + y = 1。 それぞれの「4乗の和」も 1 とする: x4 + y4 = 1。この条件を満たす x と y の値は?

(II) x + y = 7 かつ x4 + y4 = 74 を満たす x, y を求める。一般に x + y = z という条件で x4 + y4 = z4 の解を求める。

x = ±1, y = 0 等の自明解を別にすると、x4 + y4 = z4 に整数解はない(Fermat の最終定理の一番簡単なケース)。それと少し似ているが、このメモでは x + y = z かつ x4 + y4 = z4 という問題を考える。「べき和を基本対称式で表すこと」がどう役立つのか、という簡単な具体例。

→ 続きを読む

⁂

2024-05-30 2項の4乗和と3項の4乗和

a + b = A で ab = B のとき、 a2 + b2 = (a + b)2 − 2(ab) = A − 2B。それと同じように、 A と B を使って a4 + b4 を表すことを考える。

→ 続きを読む

⁂

2024-05-29 ジラルの4乗公式

4項の4乗和 a4 + b4 + c4 + d4 を基本対称式の組み合わせで表すこと。 (a + b + c + d)4 の展開を考えて、全部「手作り」する過程は面白いけど、結論だけが欲しいのなら、4項の3乗和 a3 + b3 + c3 + d3 に帰着させる方が簡単。本質的には Newton の公式(漸化式)と同じ仕組み。

→ 続きを読む

⁂

2024-05-28 ジラルの3乗公式の簡潔な導出

3次式 g(x) = x3 + Px2 + Qx + R の根を x = a, b, c とすると:
  g(a) = a3 + Pa2 + Qa + R = 0
  g(b) = b3 + Pb2 + Qb + R = 0
  g(c) = c3 + Pc2 + Qc + R = 0

→ 続きを読む

⁂

2024-05-27 P. Rolli の等式

(i)  cos2 (π/13) + cos2 (3π/13) + cos2 (4π/13) = (11 + 13)/8

(ii)  sin (π/13) + sin (3π/13) + sin (4π/13) = {[26 + 613]}/4

→ 続きを読む

⁂

2024-05-26 20° の狂気と秩序 madness, yet there is method

#遊びの数論 #円周13等分 #1 の原始根 #(28)

長さ 1 の斜辺が、底辺と 20° の角を成す直角三角形――。人は、その底辺の長さをコサイン 20° と呼ぶ。
  cos 20° = 0.93969 26207…

そんな無理数を3乗したり15乗したりすることに、何の意味があるというのか。一体われわれは、なぜこの数を15乗したのか…。だが、しかしッ!
  cos3 20° − cos3 40° − cos3 80° = cos15 20° − cos15 40° − cos15 80° = 3/8

何という奇妙な等式だろう! この等式は、いわば狂気である。美しい狂気である。その狂気には、秩序がある…

→ 続きを読む

⁂

2024-05-24 sin 9倍角について 20°, 40°, 60°, 80° への追記

#遊びの数論 #(28)

ゴチャゴチャした9倍角の式には、整然とした構造が秘められている。

→ 続きを読む

⁂

2024-05-22 きょうの珍品 3乗和 = 1乗和

#遊びの数論 #円周13等分 #3次方程式 #(28)

cos3 (2π/13) + cos3 (6π/13) + cos3 (8π/13) = cos (2π/13) + cos (6π/13) + cos (8π/13)

→ 続きを読む

⁂

2024-05-21 20°, 40°, 60°, 80° の sec の4乗和 および cos の4乗和

#遊びの数論 #ジラルの公式 #3次方程式 #(28)

sec θ = 1/(cos θ) は余弦の逆数。

整数 sec4 (π/9) + sec4 (2π/9) + sec4 (3π/9) + sec4 (4π/9) を求める三つの方法。

→ 続きを読む

⁂

2024-05-20 標準形3次式の根の n 乗和 奇妙きてれつ15乗和

#遊びの数論 #ジラルの公式 #3次方程式 #(28)

一般の多項式の根の和・平方和・立方和・4乗和については、一応解決した。5乗和以上の一般論は面倒だが、「2次項のない3次式」の場合、便利な方法がある。次のびっくり15乗和を発見!
  cos15 40° + cos15 80° + cos15 160° = cos3 40° + cos3 80° + cos3 160° = 3/8

→ 続きを読む

⁂

チラ裏より

チラ裏」は、きちんとまとまった記事ではなく、断片的なメモです…

***


主な新着コンテンツ

2024年1月12日 十六元数の零因子 君は 0 を割ることができるか?
初等的証明に成功。世界初かも、少なくともオンライン資料では。

2024年1月17日 Moufang 恒等式の同値性 初等的証明
これも(ネットでは)世界初かも。教科書的には autotopism という抽象概念を使うのだが、そんなややこしいことは必要ない。

2024年2月7日 ゾクッとする式・きれいな式 tan2 20° + tan2 40° + tan2 80° = 33

2024年2月15日 はじめての4次方程式 1 の5乗根・再考

2024年3月3日 一辺 1 の正五角形の面積 算数バージョン

2024年3月27日 五・六・十角形の恒等式 現代とは違う感覚

2024年4月11日 正17角形は作図可能? 複素数を使わない気軽な散策

新着記事

時間を止めてイタズラできたら楽しいか (2024-04-21)
『逃げちゃおぜ、世界の中に』 第2話
ハッピー・ハミルトン・デー☆4次元もこもこ180年記念 (2023-10-16)
発見の喜びのあまり、通りがかった石橋に、衝動的に「発見した式」を刻み込んでしまった…という伝説は史実

数学・プログラミング・コンピューター

妖精の森 ♌︎ ペル方程式の夏(2020-12-27)
x2 − 79y2 = 5 を満たす整数 (xy) は存在しません。その証明は意外と難しく、しかも隠された深い意味を持っています。この種の問題を扱います。ハイライトは、2020年夏に発見されたばかりの「改良版コンラッドの不等式」。 〔v4: 2021年9月5日〕
まあるい緑の単位円 (三角関数覚え歌)(2017-12-24)
まあるい緑の単位円/半径 斜辺の三角形/「高さ」の「さ」の字はサインの「サ」/サインは 対辺 高さ
アルファとベータが角引いた (加法定理・図解の歌)(2017-12-24)
「ごんべさんの赤ちゃん」のメロディーで。「アルファさんとベータさんが麦畑」でもOK。 〔最終更新: 2018年1月28日〕
cos 36° 魔法のにおい(2018-01-14)
五角形を使った解法も優雅だが、代数的に… 〔最終更新: 2024年4月18日〕
cos π/7 正七角形の七不思議(2018-01-28)
日頃めったに見掛けない正七角形。その作図不可能性は、有名な「角の3等分問題」に帰着する。コンパス・定規・「角度3等分」器があれば、360° を7等分できる! 〔最終更新: 2024年5月18日〕
覚えやすさを重視した3次方程式の解法(2018-02-11)
分数なくして、すっきり。語呂合わせ付き。 〔v8: 2019年3月17日〕
3次方程式の奥(2018-03-04)
3次方程式は奥が深い。「判別式の図形的解釈」は1990年代の新発見だという。 〔v15: 2022年2月23日〕
3次方程式の判別式(2018-03-18)
いろいろな判別式。Qiaochu Yuan による恐ろしくエレガントな解法。 〔v10: 2024年4月18日〕
3次方程式と双曲線関数 ☆ 複素関数いじっちゃお(2019-02-17)
定義から始めてのんびり進むので、双曲線関数の予備知識は不要。3次方程式も別記事で初歩から解説。三角・指数関数なら知ってるという探検気分のあなたへ。複素関数プチ体験。 〔v7: 2021年2月19日〕
cos i = ?
曇りなきオイラーの公式 微分を使わない直接証明(2019-02-17)
exp ix = cos xi sin x のこんな証明。目からうろこが落ちまくる! 〔v11: 2020年12月23日〕
−1 の 3/2 乗? オイラーの公式(その2)(2019-03-03)
(−1)3/2 って ((−1)3)1/2 = (−1)1/2 = i なのか、((−1)1/2)3 = i3 = −i なのか、それとも…? exp zez が同じという根拠は? 〔v7: 2021年1月24日〕
(za)b = zab の成立条件(2019-06-09)
(za)b = zab は一般には不成立。ではどういう条件で、この等式が成り立つか。(za)bzab は、どういう関係にあるのか。「巻き戻しの数」(unwinding number)は、この種のモヤモヤをすっきりさせるための便利なコンセプト。 〔v6: 2022年10月25日〕
フェルマーのクリスマス定理で遊ばせて!(2018-12-23)
1640年のクリスマスの日、フェルマーはメルセンヌに宛てた手紙の中で、こう言った。「4の倍数より1大きい全ての素数は、ただ一通りの方法で、2個の平方数の和となります」 〔v6: 2023年7月16日〕
すてきな証明・すてきな作図 tan ((α + β)/2) = ?(2021-10-09)
正攻法ではゴチャゴチャ長い計算になるが、この作図によると、見ただけで「そうなって当然!」と思える。
「西暦・平成パズル」を解くアルゴリズム(2016-03-27)
整数28と四則演算で2016を作るには、最小でも9個の28が必要。
2016 = (28+28+28)×[28−(28+28+28+28)/28]
一見全数検索は大変そうだが、50行程度の平易なスクリプトで高速に解決される。ES6 の Map の長所、splice より速い要素挿入法も紹介。 〔最終更新: 2023年4月1日〕
[JS] 100行のプチ任意精度ライブラリ(2016-05-08)
JavaScript 用に最小構成的な「任意精度整数演算」ライブラリを作ってみた。 〔最終更新: 2019年6月23日〕
[JS] メルセンヌ数の分類と分解(2016-06-05)
数千万桁のメルセンヌ素数が脚光を浴びるが、その裏では、たった数百桁のメルセンヌ合成数が分解できない。 〔v6: 2019年5月5日〕
楕円曲線で因数分解(2016-08-14)
楕円曲線を使って、巨大整数に含まれる数十桁の因数を検出できる。計算は、曲線上の勝手な点を選んで整数倍するだけ。ステージ1、モンゴメリー形式、標準版ステージ2、素数ペアリングについて整理した。 〔最終更新: 2021年11月14日〕
楕円曲線の位数: 点の擬位数に基づく計算法(2016-10-02)
元の位数を考えると群の位数計算が高速化されるが、それには高速な素因数分解が必要。「擬位数」はどの教科書にも載ってないような概念だが、ハンガリー人数学者 Babai László によって研究された。 〔最終更新: 2016年10月23日〕
アルカンの異性体の数の公式・第1回 小さなパズルと不思議な解(2015-09-20)
異性体の数は難しいが、炭素数12くらいまでなら素朴な計算ができる。中学数学くらいの予備知識で気軽に取り組めて、めちゃくちゃ奥が深い。(全9回予定だが第6回の途中で止まっている。そのうち気が向いたら完結させたい)
「マイナス×マイナス=プラス」は証明できるか?(2014-08-03)
数学的に正しい質問は、「なぜマイナス×マイナス=プラスか?」ではなく「いつマイナス×マイナス=プラスか?」 〔最終更新: 2019年9月29日〕
平方剰余の相互法則(2003-03-26)
「バニラ素数とチョコレート素数」という例えを用いた「お菓子な」説明。
楕円曲線暗号(2003-11-28)
最初歩から具体例で。書き手も手探りというライブ感あふれる記事6本。手探りだからエレガントではないが、JavaScriptでは世界初の実装? 実装はダサいが、内容(ロジック)は正しい。
触って分かる公開鍵暗号RSA(2004-02-04)
理論的説明でなく、実地に体験。JavaScriptで実現したので結構注目され、大学の授業などの参考資料としても使われたらしい。ダサい実装だが、ちゃんと動作する。
デスノートをさがして: 論理パズル(2006-04-10)
真神・偽神・乱神。間違いだらけの乱神探し。
ばびっと数え歌 でかい数編 (2019-09-01)
37桁の 1,000,000,000,000,000,000,000,000,000,000,000,000(=1澗)までの数え歌。日本語・英語・SI接頭辞・2進数付き。 〔v3: 2023年3月8日〕
【注意】SSDは使ってないと壊れやすい 用がなくても週に1度は電源を(2021-06-06)
「SSDは、アクセスが速く、回転部分がないので壊れにくい。従来のハードディスクより優れた新技術…」という一般的イメージを持たれている。一方、SSDには、特有の弱点があることも知られている。

天文・暦

13日は金曜になりやすく31日は水曜になりにくい(2017-09-03)
曜日は「日月火…」の繰り返しだから各曜日は均等のようだが、「毎月1日の曜日」「13日の曜日」のように「特定の日にちが何曜になるか」を考えると、曜日分布に偏りが… 〔v6: 2019年4月21日〕
「春夏秋冬」は「夏秋冬春」より長い(2017-11-26)
「春分→夏→秋→冬→春分」と「夏至→秋→冬→春→夏至」は、どっちも春・夏・秋・冬1回ずつなのに、前者の方が長い。素朴な図解(公転最速理論?)、簡易計算、そして精密な解析解。春分間隔から春分年へ… 〔最終更新: 2022年9月1日〕
<PNG画像: 春分年・夏至年・秋分年・冬至年の長さの変動は、位相がずれたサインカーブのような曲線を描く>
公式不要の明快な曜日計算(2016-10-23)
公式や表を使わず、何も覚えていない状態で、手軽に任意の年月日の曜日を暗算。
ぼくの名前は冥王星(2013-09-30)
いいもん、いいもん! これからは小惑星になって、ジュノーちゃんやベスタちゃんと遊ぶから! …と思っていたら、「おまえは小惑星でもないんだよ」と言われてしまった。そんなー。ぼくのアイデンティティーは粉々さ。 〔v6: 2019年3月24日〕
さよなら第9惑星・冥王星 カイパーベルト終着駅(2019-03-24)
海王星~海王星~。目蒲めかま線はお乗り換えです。
第9惑星・追悼演説(2019-03-24)
我々は一つの惑星を失った。しかし、これは「終わり」を意味するのか? 否、始まりなのだ!
ケプラー方程式(微積・三角公式を使わないアプローチ)(2018-01-14)
微積分を使わず、算数的にケプラー方程式を導く。倍角・半角などの公式を使わずに、離角の関係を導く。特別な予備知識は不要。 〔最終更新: 2023年4月13日〕
ケプラー方程式・2 エロい感じの言葉(2018-01-28)
「ケプラー方程式(微積・三角公式を使わないアプローチ)」の別解・発展。 〔最終更新: 2020年11月24日〕

シリア語・Unicode・詩

少年と雲 (シリア語の詩)(2017-12-24)
雲さん、どこから来たんだい?/背中に何をしょってるの?/そんなに顔を曇らせて/空から何を見ているの?
ペシタ福音書における「女性聖霊・男性聖霊」の混在について(2014-12-14)
キリスト教の「聖霊」はイエス自身の言語では女性だったが、後に男性イメージに変化した。この変化は興味深いが、そこに注目し過ぎると中間期の状況を正しく理解できない。3種類のシリア語聖書とギリシャ語聖書を比較し「叙述トリック」を検証。 〔最終更新: 2018年11月4日〕
黙示録の奇妙な誤訳: 楽しいシリア語の世界(2018-04-15)
「南の子午線を飛ぶハゲタカ」が、なぜか「尾が血まみれのハゲタカ」に…。誤訳の裏にドラマあり。 〔最終更新: 2018年5月6日〕
シリア語: カラバシ注解(2013-12-01)
カラバシ『読み方のレッスン』はシリア語文語・西方言の教科書。ウェブ上で公開されている。その魅力を紹介し、第1巻全21課に注釈を付けた。 〔最終更新: 2016年5月8日〕
ばびっと数え歌 シリア語編(2014-02-09)
「シリア語の数詞の1~10」を覚えるための数え歌。「ごんべさんの赤ちゃん」のメロディーでも歌えます。 〔最終更新: 2017年12月24日〕
孫子兵法「弱生於強」と 2 Cor 12:9(2024-04-03)
シリア語聖書に言及するメモ。
ターナ文字入門: 表記と発音(2013-01-16)
以前公開していた記事を全面改訂。ターナ文字は、インドの南、南北1000キロにわたって散らばる島々で使われる文字。 〔最終更新: 2014年5月4日〕
HTML5 の bdi 要素と Unicode 6.3 の新しい双方向アルゴリズム(2012-12-04)
ブログのコメント欄で起きる身近な例を出発点に、双方向性が絡む問題と解決法を探る。HTML の dir 属性は落とし穴が多い。HTML5 の <bdi> は役立つ。近い将来、「ユーザー入力欄などの語句は、このタグで隔離」が常識になるかも。 〔最終更新: 2014年4月27日〕

ジョーク

未来の水 フリーズドライ ☆ 粉末乾燥水(2012-04-01)
宇宙旅行のお供に/非常時の備えに… 場所を取らない超軽量・携帯用のインスタントお水です。
イヤ~な「金縛り」を強制解除 ☆ 全自動かなほど機(2019-04-01)
睡眠中の金縛り。嫌なものですね…。そこでご紹介するのが、この「かなほど機」。金縛りになったとき、ワサビの匂いで身体を自動リセットする未来の製品です。
さよなら第9惑星・冥王星 カイパーベルト終着駅(2019-03-24)
海王星~海王星~。目蒲めかま線はお乗り換えです。
漢詩と唐代キリスト教 「日本の影響」説も(2019-04-01)
客舍かくしゃ青青せいせい 柳色りゅうしょく新たなり」仏教徒でもあった唐の大詩人・王維(おうい)。彼がキリスト教とも関わっていたことは、ほとんど知られていない。(エイプリルフールのジョーク記事)
円周率は12個の2 スパコンで判明/ほか 3題(2016-04-01)
三原則ロボットおちょくられて仕返し?/円周率は12個の2 スパコンで判明/人間を模倣する学習AI 学習し過ぎ?
ISOとJISによる「ハッカー」の正式な定義(2005-02-19)
JIS規格では「ハッカー」という言葉が定義されてる。
ヒマワリをふてくされさせる実験(2005-02-20)
お花はとってもデリケート。
「確信犯」たちの「開発動機」(2005-09-23)
ストラビンスキー「ファゴット奏者を苦しめてやろうとしてやった。苦しそうな音なら何でも良かった」
「水からの伝言」の世界(2006-08-21)
水さん、ちょっと漏れ過ぎです。
脳内ディベート大会(2009-07-31)
応援団を応援することは正しいか。タンポポの綿毛を吹いて飛ばしていいか。

漫画・アニメ

大島弓子の漫画 (チラ裏3題)(2019-04-28)
バナブレは「漫画で何ができるのか?」という世界の枠組みそのものを変えた。綿国(わたくに)は、漫画・アニメ史上「猫耳の発明」という意味も持つ。もともとは「自分は半分人間だと思っている子猫」の主観的世界を表す絶妙な表現。
ラピュタ滅びの呪文は波動砲かフェーザー砲か?(2006-01-28)
ムスカは、ジブリ作品では珍しい悪役と評されるが、ラピュタ文字の解読は、現実世界ならノーベル賞もの。
勇者よ、侵略者から東京を守れ(2006-01-22)
「ブジュンブラにキメラアニマが現れたわ!」 お気に入りのネタだが、アニオタ以外の一般人には意味不明かも。
チラ裏
アニメ関係の小ネタも多い。イタリアのアニメ事情もあるよ。

字幕

MKV埋め込み字幕用フォントのMIME問題 (2019-10-20)
字幕用フォントが、ロードされない事例が起きている。問題の背景・対策・対応状況。
SSA入門 中級編(2004-08-27)
二つの入門編(音声タイミング・基本スタイリング)に続くフレーム・タイミング関連の内容。古い記事で使用ツールは時代遅れだが、考え方は依然参考になるかも。
[SSA/ASS] 高品質のフェイドイン・フェイドアウト(2005-12-21)
単純な fad() は濁りやすい。各種の代替手段を紹介。
ASS: 縁ワイプと縦カラオケ(2006–2009)
字幕と音声のずらし方/縁ワイプ/字幕のリップシンク/縦カラオケ/他。古い記事だが参考までに。

哲学・ファンタジー

60%他の生物【人体の細胞】100%星くず(2019-02-24)
ヒトの体は約25兆の細胞から成るが、体には65兆の細胞が…。本人以外の40兆は何なんでしょ? 〔v8: 2019年4月18日〕
至るところ青山 (チラ裏3題)(2019-04-14)
3丁目が見えない理由(先行きの不安)は、1丁目にいるからで、2丁目まで行けば自然と選択肢は狭まる。
不死でないから星は輝く (チラ裏3題)(2019-04-14)
「核融合には燃料が必要。燃料を使い果たせば反応は止まる」という当たり前のことを言い換えると「いつかは終わるから今輝いている」。
猫のしっぽを思い切り引っ張ることは十戒のどれに違反するか?(2014-11-23)
南泉は言った。「この猫の命が惜しければ、禅を一言で語れ。さもないと猫を斬り殺す」 〔最終更新: 2019年4月24日〕
神から見た「主の祈り」(2004-10-04)
「天にましますわれらの父よ」 神「はい?」 — へリング牧師は、ジョークのような設定で深い問題を提示した。 〔最終更新: 2013年10月2日〕
「無断コピー以外」を禁止するライセンス(2004-10-04)
人間の心理的困難があまりに大きいようなので、 それに対抗するために、次のような新しいライセンス形態を思いつくほどだ。いわく…
妖精物語 3題(2005-07-02)
王様の赤いばらと白いばら。
「反辞書」の著者フレッド・レスラー(2009-02-03)
Urban Dictionary というサイトをご存じでしょうか。 ウィキペディアみたいな、でもそれよりずっと砕けた新語辞典…


お知らせ

DRM-Free; No Rights Reserved

<メールアドレス>
PGP/GPG Key [Fingerprint …75C0 706B 3CD0 B5D0]