妖精現実



最新記事 ゲンパツカードを知ってるかい?(2022-12-04)

[ 新着記事 | 新着メモ | 数学・プログラミング
| 天文・暦 | シリア語・Unicode・詩 | ジョーク
| 漫画・アニメ | 字幕 | 哲学・ファンタジー | 全記事 ]

チラ裏

「チラ裏」はメモ。誤字・誤記・脱線が多いです!

***

2023-01-23 LLT: Lehmer’s Lemma 1 ギネスに載る素数…?

#数論 #フィボナッチ #Lucas-Lehmer

新しいメルセンヌ素数が発見されると、場合によっては「世界最大の既知の素数」として、一般メディアでも話題になる。2023年1月現在の最大 [3] は、2018年に発見された 282589933 − 1 で、2500万桁に近い。

計算以前に「数字自体を書く」だけでも大変な巨大さで、1ページに1万桁ずつ書くとしても約2500ページ。毎秒1桁ずつ飲まず食わずで数字を書き続けたとして、書き終わるのは10カ月後だ!

そんなでかい数が素数か素数でないか、どうやって判定されるのか? 一般には困難な問題だが、メルセンヌ数に限っては「LLT」という方法がある。やり方自体はシンプルで、普通の人でも容易に理解可能。比較的小さいメルセンヌ数なら、ブラウザ上の JavaScript でも判定は可能。「なぜその方法で判定できるの?」という理論についても、基本アルゴリズムを完成させた D. H. Lehmer 自身による初等的な証明 [2] があり、フィボナッチ数列のいとこ「バイナッチ数列」と関係している。一連のメモでは、この証明を最終目的地として各ステップをのんびり検討し、興味を引くような話題があれば寄り道もして、いろんな景色を楽しみたい。

続き

⁂

2023-01-20 その数列は強いか? 「星のらせん階段」

#数論 #フィボナッチ #Lucas-Lehmer

ちょうど10段ごとに一周するらせん階段では、10段目・20段目・30段目…が、階段の基点(0段目)の真上になる。そのように、フィボナッチ数列では、第10項・第20項・第30項…が同じ倍数列の上で、きれいにハモっている
  F20 = 6765, F30 = 832040, F40 = …
が、全部 F10 = 55 でキッカリ割り切れる*9のだ!

この性質は、10に限らず任意の周期で成り立つ: F6, F12, F18, … も倍数列、F7, F14, F21, … も倍数列。その結果、例えば F20 は「F4 から始まる倍数列」、「F10 から始まる倍数列」など、複数の周期の「波」に乗っていて、自分自身も F20, F40, F60, … という新たな「波」の出発点となる。

画像: チューリッヒ中央駅のフィボナッチ数列フィボナッチ数で遊んでて、この性質に気付いたときは、ちょ~美しい!と感じ「星のらせん階段」と名付けた。フィボナッチ数の黄金比は、正五角形・星型と縁が深いので「星」。フィボナッチ数には、巻き貝のような「らせん」のイメージもある――この渦巻きは「ジョジョの奇妙な冒険」第7部でも、重要な小道具となってるようだ*10。スイスのチューリッヒ中央駅にも、らせんとフィボナッチ数を題材にした巨大オブジェがある(画像)。

「星のらせん」構造を持つ数列は、正式には divisibility sequence と呼ばれるらしい。フィボナッチのいとこ「バイナッチ」も同じ構造を持つが、フィボナッチは「強い」、バイナッチは「弱い」という違いがある。後学のため「強い・弱い」の意味を具体例で観察しておきたい。

続き

⁂

2023-01-17 バイナッチ数列の加法定理

#数論 #フィボナッチ #Lucas-Lehmer

フィボナッチ数列の場合、Binet の公式や加法定理が、いろいろな研究の土台となった。フィボナッチ数列のいとこ「バイナッチ数列」についても、加法定理を考えてみたい。導出法はフィボナッチ版とほとんど同じで、その復習ともいえる。加法定理の一つでは、フィボナッチ版にはなかった係数が付く(この係数は「逆数」の形の違いに由来し、さかのぼると、背後にある2次方程式の定数項の、符号を変えたものに当たる)。

続き

⁂

2023-01-16 「マイナス番目」のフィボナッチ数? 因数の出現位置

#数論 #フィボナッチ #Lucas-Lehmer

フィボナッチ数列 1, 1, 2, 3, 5, 8, 13, …。その第1項 F1 = 1 の直前の理論上の「第0項」は F0 = 0 だが、そのさらに直前の「第マイナス1項」は何だろうか? このような「マイナス番目の項」を考えることで、通常の範囲のフィボナッチ数列について、素敵な性質が証明される。

続き

⁂

2023-01-13 いかすぜ!バイナッチ 依存症者の末路…w

#数論 #フィボナッチ #Lucas-Lehmer

フィボナッチ数列というのは 1, 1, 2, 3, 5, 8, 13, 21, … のように、各項が直前の2項の和になっている数列の一種。「第0項」の 0 から始めると:
  0, 1, 1, 2, 3, 5, 8, 13, 21, …

それと似ているが、ひとひねり加え、各項を直前の2項の和の2倍としてみよう:
  0, 1, 2, 6, 16, 44, 120, 328, …
例えば第3項(左端の 0 を第0項とする)の 6 は、直前の2項の和 1+2 の2倍。第4項の 16 は、直前の2項の和 2+6 の2倍。以下同様。フィボナッチ数列の「直前の2項の和」という部分に「~の2倍」という処理を追加した数列なんで、これをバイナッチ数列と呼ぶことにする(正式名称ではない)。「一般化 Lucas 数列」の一例だが、あまり取り上げられることのない存在だろう。どんな景色が待ち受けているのだろうか…

続き

⁂

2023-01-12 アンラッキー・セブン④ あなたの勘では…?

#数論 #第二補充法則

フェルマー風の数列――
  A: 3, 5, 9, 17, 33, 65, 129, …
それは 2 が倍々となる次の数列の各項に 1 を足したもの。
  B: 2, 4, 8, 16, 32, 64, 128, …

A の偶数番目の項 5, 17, 65 = 5 × 13, 257, 1025 = 5 × 5 × 41, … を調べると、どの数も、そしてどの約数も、「4 の倍数より 1 大きい」という性質を持っているようだ。そういう目で、今度は A の奇数番目の項を眺めると:
  3, 9 = 3 × 3, 33 = 3 × 11, 129 = 3 × 43, 513 = 3 × 3 × 3 × 19, …
因数にやけに 3 が多いことはさておき、どの素因数も「4 の倍数より 1 小さい」ようだ(3, 11, 43, 19)。――偶数番目・奇数番目の項に関するこの観察。たまたま数列の最初の方がそうなってるだけなのだろうか。それとも、どこまで行っても、無限にこの性質が維持されるのか?

あなたの勘では…?

続き

⁂

2023-01-08 オイラーの定理 もしも週が8日だったら

#数論

小学生のフェルマーの小定理」の別バージョン。簡単な算数だけで「オイラーの定理」。アホくさい(けど分かりやすい?)アプローチをお楽しみください。

【1】 「1週間が8種類の曜日から成る異世界」を考える。8種類の曜日を順に「1曜日」「2曜日」…「8曜日」と呼ぶことにして、話を簡単にするため、毎月の「1日」は「1曜日」に固定されているとする(そして月の日数は無限にあるとしよう)。「8曜日」である8日の翌日の9日は、「1曜日」に戻る。そのまた翌日の10日は「2曜日」。そして例えば(その5日後の)15日は「7曜日」…。一般に「D日」は、D が8の倍数なら「8曜日」で、そうでなければ D を8で割った余りを R として「R曜日」となる。

続き

⁂

2023-01-04 アンラッキー・セブン③ 2は1の4乗根!?

#数論

ある数の4乗根とは、4乗するとその数になる値。例えば 3 を 4 乗すると…
  34 = 3 × 3 × 3 × 3 = (3 × 3) × (3 × 3) = 9 × 9 = 81
…なので 3 は 81 の4乗根。同様に 24 = 16 なので、2 は 16 の4乗根。

パラレルワールドの一つ mod 5 の世界では、「5 で割った余りが同じなら同じ値」と見なされるので、16 と 11 と 6 と 1 などは「同じ」(合同):
  16 ≡ 11 ≡ 6 ≡ 1 (mod 5)
だから 24 ≡ 1 (mod 5) であり、2 は 1 の4乗根となる!

驚くべきことに 3 以上のどんな奇数 a を考えても、パラレルワールド mod a では、2 は 1 の何乗根かになっている。例えば…

続き

⁂

2023-01-02 アンラッキー・セブン② 幸運と不運の分かれ目

#数論

2, 4 = 2 × 2, 8 = 2 × 2 × 2, 16 = 2 × 2 × 2 × 2, …は「2 だけ」を掛け合わせた数なので、3 では割り切れない。より詳しく言うと、2 は 3 の倍数より 1 小さい(この場合の「3 の倍数」とは「3 の 1 倍」つまり 3 自身)。このことを次のような記号で表す:
  2 ≡ −1 (mod 3)
一方、4 は 3 の倍数より 1 大きい。8 は 3 の倍数より 1 小さく、16 は 3 の倍数より 1 大きい。記号的には、それぞれこうなる:
  4 ≡ 1 (mod 3), 8 ≡ −1 (mod 3), 16 ≡ 1 (mod 3)

これについては、最初の…
  2 ≡ −1 (mod 3)
…の両辺を2乗・3乗・4乗したと考えると、見通しがいい。例えば:
  4 ≡ 1 (mod 3) は 22 ≡ (−1)2 (mod 3) と同じこと(☆)
  8 ≡ −1 (mod 3) は 23 ≡ (−1)3 (mod 3) と同じこと

ところで本題とは全然関係ないが、(☆)は「マイナスかけるマイナスがプラスになることの証明」といえなくもない…。22 ≡ (−1)2 が 4 ≡ 1 と同じ意味であるからには、(−1)2 = (−1) × (−1) が +1 と同じ意味にならねばならず、事実 4 は 3 の倍数プラス 1 である!

続き

⁂

2022-12-31 アンラッキー・セブン 2, 4, 8, 16, 32…の不思議

#数論 #ジグモンディの定理

2 を次々と倍々にした数 2, 4, 8, 16, 32, … に、それぞれ 1 を足してみます。
  3, 5, 9, 17, 33, …
この一つ一つの数は、どんな数で割り切れるでしょうか?

3, 5, 17素数(1 と自分自身でしか割り切れない数)。9 は 3 で(2回)割り切れます。33 は 3 と 11 で割り切れます。

64, 128, … など、もうちょっと先まで同様のことを考えてみると――

続き

⁂

チラ裏より

チラ裏」は、きちんとまとまった記事ではなく、断片的なメモです…

***


新着記事

ゲンパツカードを知ってるかい? (2022-12-04)
ポイントたっぷり ツケは後
すてきな証明・すてきな作図 tan ((α + β)/2) = ?(2021-10-09)
正攻法ではゴチャゴチャ長い計算になるが、この作図によると、見ただけで「そうなって当然!」と思える。
【注意】SSDは使ってないと壊れやすい 用がなくても週に1度は電源を(2021-06-06)
「SSDは、アクセスが速く、回転部分がないので壊れにくい。従来のハードディスクより優れた新技術…」という一般的イメージを持たれている。一方、SSDには、特有の弱点があることも知られている。
妖精の森 ♌ ペル方程式の夏(2020-12-27)
x2 − 79y2 = 5 を満たす整数 (xy) は存在しません。その証明は意外と難しく、しかも隠された深い意味を持っています。この種の問題を扱います。ハイライトは、2020年夏に発見されたばかりの「改良版コンラッドの不等式」。 〔v4: 2021年9月5日〕
MKV埋め込み字幕用フォントのMIME問題 (2019-10-20)
字幕用フォントが、ロードされない事例が起きている。問題の背景・対策・対応状況。
ばびっと数え歌 でかい数編 (2019-09-01)
31桁の 1,000,000,000,000,000,000,000,000,000,000(=100穣)までの数え歌。日本語・英語・SI接頭辞・2進数付き。

数学・プログラミング

まあるい緑の単位円 (三角関数覚え歌)(2017-12-24)
まあるい緑の単位円/半径 斜辺の三角形/「高さ」の「さ」の字はサインの「サ」/サインは 対辺 高さ
アルファとベータが角引いた (加法定理・図解の歌)(2017-12-24)
「ごんべさんの赤ちゃん」のメロディーで。「アルファさんとベータさんが麦畑」でもOK。 〔最終更新: 2018年1月28日〕
cos 36° 魔法のにおい(2018-01-14)
五角形を使った解法も優雅だが、代数的に… 〔最終更新: 2019年9月30日〕
cos π/7 正七角形の七不思議(2018-01-28)
日頃めったに見掛けない正七角形。その作図不可能性は、有名な「角の3等分問題」に帰着する。コンパス・定規・「角度3等分」器があれば、360° を7等分できる! 〔最終更新: 2022年5月8日〕
覚えやすさを重視した3次方程式の解法(2018-02-11)
分数なくして、すっきり。語呂合わせ付き。 〔v8: 2019年3月17日〕
3次方程式の奥(2018-03-04)
3次方程式は奥が深い。「判別式の図形的解釈」は1990年代の新発見だという。 〔v15: 2022年2月23日〕
3次方程式の判別式(2018-03-18)
いろいろな判別式。Qiaochu Yuan による恐ろしくエレガントな解法。 〔v8: 2022年2月27日〕
3次方程式と双曲線関数 ☆ 複素関数いじっちゃお(2019-02-17)
定義から始めてのんびり進むので、双曲線関数の予備知識は不要。3次方程式も別記事で初歩から解説。三角・指数関数なら知ってるという探検気分のあなたへ。複素関数プチ体験。 〔v7: 2021年2月19日〕
cos i = ?
曇りなきオイラーの公式 微分を使わない直接証明(2019-02-17)
exp ix = cos xi sin x のこんな証明。目からうろこが落ちまくる! 〔v11: 2020年12月23日〕
−1 の 3/2 乗? オイラーの公式(その2)(2019-03-03)
(−1)3/2 って ((−1)3)1/2 = (−1)1/2 = i なのか、((−1)1/2)3 = i3 = −i なのか、それとも…? exp zez が同じという根拠は? 〔v7: 2021年1月24日〕
(za)b = zab の成立条件(2019-06-09)
(za)b = zab は一般には不成立。ではどういう条件で、この等式が成り立つか。(za)bzab は、どういう関係にあるのか。「巻き戻しの数」(unwinding number)は、この種のモヤモヤをすっきりさせるための便利なコンセプト。 〔v6: 2022年10月25日〕
フェルマーのクリスマス定理で遊ばせて!(2018-12-23)
1640年のクリスマスの日、フェルマーはメルセンヌに宛てた手紙の中で、こう言った。「4の倍数より1大きい全ての素数は、ただ一通りの方法で、2個の平方数の和となります」 〔v5: 2020年12月27日〕
「西暦・平成パズル」を解くアルゴリズム(2016-03-27)
整数28と四則演算で2016を作るには、最小でも9個の28が必要。
2016 = (28+28+28)×[28−(28+28+28+28)/28]
一見全数検索は大変そうだが、50行程度の平易なスクリプトで高速に解決される。ES6 の Map の長所、splice より速い要素挿入法も紹介。 〔最終更新: 2016年4月10日〕
[JS] 100行のプチ任意精度ライブラリ(2016-05-08)
JavaScript 用に最小構成的な「任意精度整数演算」ライブラリを作ってみた。 〔最終更新: 2019年6月23日〕
[JS] メルセンヌ数の分類と分解(2016-06-05)
数千万桁のメルセンヌ素数が脚光を浴びるが、その裏では、たった数百桁のメルセンヌ合成数が分解できない。 〔v6: 2019年5月5日〕
楕円曲線で因数分解(2016-08-14)
楕円曲線を使って、巨大整数に含まれる数十桁の因数を検出できる。計算は、曲線上の勝手な点を選んで整数倍するだけ。ステージ1、モンゴメリー形式、標準版ステージ2、素数ペアリングについて整理した。 〔最終更新: 2021年11月14日〕
楕円曲線の位数: 点の擬位数に基づく計算法(2016-10-02)
元の位数を考えると群の位数計算が高速化されるが、それには高速な素因数分解が必要。「擬位数」はどの教科書にも載ってないような概念だが、ハンガリー人数学者 Babai László によって研究された。 〔最終更新: 2016年10月23日〕
アルカンの異性体の数の公式・第1回 小さなパズルと不思議な解(2015-09-20)
異性体の数は難しいが、炭素数12くらいまでなら素朴な計算ができる。中学数学くらいの予備知識で気軽に取り組めて、めちゃくちゃ奥が深い。(全9回予定だが第6回の途中で止まっている。そのうち気が向いたら完結させたい)
「マイナス×マイナス=プラス」は証明できるか?(2014-08-03)
数学的に正しい質問は、「なぜマイナス×マイナス=プラスか?」ではなく「いつマイナス×マイナス=プラスか?」 〔最終更新: 2019年9月29日〕
平方剰余の相互法則(2003-03-26)
「バニラ素数とチョコレート素数」という例えを用いた「お菓子な」説明。
楕円曲線暗号(2003-11-28)
最初歩から具体例で。書き手も手探りというライブ感あふれる記事6本。手探りだからエレガントではないが、JavaScriptでは世界初の実装? 実装はダサいが、内容(ロジック)は正しい。
触って分かる公開鍵暗号RSA(2004-02-04)
理論的説明でなく、実地に体験。JavaScriptで実現したので結構注目され、大学の授業などの参考資料としても使われたらしい。ダサい実装だが、ちゃんと動作する。
デスノートをさがして: 論理パズル(2006-04-10)
真神・偽神・乱神。間違いだらけの乱神探し。

天文・暦

13日は金曜になりやすく31日は水曜になりにくい(2017-09-03)
曜日は「日月火…」の繰り返しだから各曜日は均等のようだが、「毎月1日の曜日」「13日の曜日」のように「特定の日にちが何曜になるか」を考えると、曜日分布に偏りが… 〔v6: 2019年4月21日〕
「春夏秋冬」は「夏秋冬春」より長い(2017-11-26)
「春分→夏→秋→冬→春分」と「夏至→秋→冬→春→夏至」は、どっちも春・夏・秋・冬1回ずつなのに、前者の方が長い。素朴な図解(公転最速理論?)、簡易計算、そして精密な解析解。春分間隔から春分年へ… 〔最終更新: 2022年9月1日〕
PNG画像 (20 KiB): 春分年・夏至年・秋分年・冬至年の長さの変動は、位相がずれたサインカーブのような曲線を描く。
公式不要の明快な曜日計算(2016-10-23)
公式や表を使わず、何も覚えていない状態で、手軽に任意の年月日の曜日を暗算。
ぼくの名前は冥王星(2013-09-30)
いいもん、いいもん! これからは小惑星になって、ジュノーちゃんやベスタちゃんと遊ぶから! …と思っていたら、「おまえは小惑星でもないんだよ」と言われてしまった。そんなー。ぼくのアイデンティティーは粉々さ。 〔v6: 2019年3月24日〕
さよなら第9惑星・冥王星 カイパーベルト終着駅(2019-03-24)
海王星~海王星~。目蒲めかま線はお乗り換えです。
第9惑星・追悼演説(2019-03-24)
我々は一つの惑星を失った。しかし、これは「終わり」を意味するのか? 否、始まりなのだ!
ケプラー方程式(微積・三角公式を使わないアプローチ)(2018-01-14)
微積分を使わず、算数的にケプラー方程式を導く。倍角・半角などの公式を使わずに、離角の関係を導く。特別な予備知識は不要。 〔最終更新: 2022年10月18日〕
ケプラー方程式・2 エロい感じの言葉(2018-01-28)
「ケプラー方程式(微積・三角公式を使わないアプローチ)」の別解・発展。 〔最終更新: 2020年11月24日〕

シリア語・Unicode・詩

シリア語: カラバシ注解(2013-12-01)
カラバシ『読み方のレッスン』はシリア語文語・西方言の教科書。ウェブ上で公開されている。その魅力を紹介し、第1巻全21課に注釈を付けた。 〔最終更新: 2016年5月8日〕
ばびっと数え歌 シリア語編(2014-02-09)
「シリア語の数詞の1~10」を覚えるための数え歌。「ごんべさんの赤ちゃん」のメロディーでも歌えます。 〔最終更新: 2017年12月24日〕
ペシタ福音書における「女性聖霊・男性聖霊」の混在について(2014-12-14)
キリスト教の「聖霊」はイエス自身の言語では女性だったが、後に男性イメージに変化した。この変化は興味深いが、そこに注目し過ぎると中間期の状況を正しく理解できない。3種類のシリア語聖書とギリシャ語聖書を比較し「叙述トリック」を検証。 〔最終更新: 2018年11月4日〕
少年と雲 (シリア語の詩)(2017-12-24)
雲さん、どこから来たんだい?/背中に何をしょってるの?/そんなに顔を曇らせて/空から何を見ているの?
黙示録の奇妙な誤訳: 楽しいシリア語の世界(2018-04-15)
「南の子午線を飛ぶハゲタカ」が、なぜか「尾が血まみれのハゲタカ」に…。誤訳の裏にドラマあり。 〔最終更新: 2018年5月6日〕
ターナ文字入門: 表記と発音(2013-01-16)
以前公開していた記事を全面改訂。ターナ文字は、インドの南、南北1000キロにわたって散らばる島々で使われる文字。 〔最終更新: 2014年5月4日〕
HTML5 の bdi 要素と Unicode 6.3 の新しい双方向アルゴリズム(2012-12-04)
ブログのコメント欄で起きる身近な例を出発点に、双方向性が絡む問題と解決法を探る。HTML の dir 属性は落とし穴が多い。HTML5 の <bdi> は役立つ。近い将来、「ユーザー入力欄などの語句は、このタグで隔離」が常識になるかも。 〔最終更新: 2014年4月27日〕

ジョーク

未来の水 フリーズドライ ☆ 粉末乾燥水(2012-04-01)
宇宙旅行のお供に/非常時の備えに… 場所を取らない超軽量・携帯用のインスタントお水です。
イヤ~な「金縛り」を強制解除 ☆ 全自動かなほど機(2019-04-01)
睡眠中の金縛り。嫌なものですね…。そこでご紹介するのが、この「かなほど機」。金縛りになったとき、ワサビの匂いで身体を自動リセットする未来の製品です。
さよなら第9惑星・冥王星 カイパーベルト終着駅(2019-03-24)
海王星~海王星~。目蒲めかま線はお乗り換えです。
漢詩と唐代キリスト教 「日本の影響」説も(2019-04-01)
客舍かくしゃ青青せいせい 柳色りゅうしょく新たなり」仏教徒でもあった唐の大詩人・王維(おうい)。彼がキリスト教とも関わっていたことは、ほとんど知られていない。(エイプリルフールのジョーク記事)
円周率は12個の2 スパコンで判明/ほか 3題(2016-04-01)
三原則ロボットおちょくられて仕返し?/円周率は12個の2 スパコンで判明/人間を模倣する学習AI 学習し過ぎ?
ISOとJISによる「ハッカー」の正式な定義(2005-02-19)
JIS規格では「ハッカー」という言葉が定義されてる。
ヒマワリをふてくされさせる実験(2005-02-20)
お花はとってもデリケート。
「確信犯」たちの「開発動機」(2005-09-23)
ストラビンスキー「ファゴット奏者を苦しめてやろうとしてやった。苦しそうな音なら何でも良かった」
「水からの伝言」の世界(2006-08-21)
水さん、ちょっと漏れ過ぎです。
脳内ディベート大会(2009-07-31)
応援団を応援することは正しいか。タンポポの綿毛を吹いて飛ばしていいか。

漫画・アニメ

大島弓子の漫画 (チラ裏3題)(2019-04-28)
バナブレは「漫画で何ができるのか?」という世界の枠組みそのものを変えた。綿国(わたくに)は、漫画・アニメ史上「猫耳の発明」という意味も持つ。もともとは「自分は半分人間だと思っている子猫」の主観的世界を表す絶妙な表現。
ラピュタ滅びの呪文は波動砲かフェーザー砲か?(2006-01-28)
ムスカは、ジブリ作品では珍しい悪役と評されるが、ラピュタ文字の解読は、現実世界ならノーベル賞もの。
勇者よ、侵略者から東京を守れ(2006-01-22)
「ブジュンブラにキメラアニマが現れたわ!」 お気に入りのネタだが、アニオタ以外の一般人には意味不明かも。
チラ裏
アニメ関係の小ネタも多い。イタリアのアニメ事情もあるよ。

字幕

MKV埋め込み字幕用フォントのMIME問題 (2019-10-20)
字幕用フォントが、ロードされない事例が起きている。問題の背景・対策・対応状況。
SSA入門 中級編(2004-08-27)
二つの入門編(音声タイミング・基本スタイリング)に続くフレーム・タイミング関連の内容。古い記事で使用ツールは時代遅れだが、考え方は依然参考になるかも。
[SSA/ASS] 高品質のフェイドイン・フェイドアウト(2005-12-21)
単純な fad() は濁りやすい。各種の代替手段を紹介。
ASS: 縁ワイプと縦カラオケ(2006–2009)
字幕と音声のずらし方/縁ワイプ/字幕のリップシンク/縦カラオケ/他。古い記事だが参考までに。

哲学・ファンタジー

60%他の生物【人体の細胞】100%星くず(2019-02-24)
ヒトの体は約25兆の細胞から成るが、体には65兆の細胞が…。本人以外の40兆は何なんでしょ? 〔v8: 2019年4月18日〕
至るところ青山 (チラ裏3題)(2019-04-14)
3丁目が見えない理由(先行きの不安)は、1丁目にいるからで、2丁目まで行けば自然と選択肢は狭まる。
不死でないから星は輝く (チラ裏3題)(2019-04-14)
「核融合には燃料が必要。燃料を使い果たせば反応は止まる」という当たり前のことを言い換えると「いつかは終わるから今輝いている」。
猫のしっぽを思い切り引っ張ることは十戒のどれに違反するか?(2014-11-23)
南泉は言った。「この猫の命が惜しければ、禅を一言で語れ。さもないと猫を斬り殺す」 〔最終更新: 2019年4月24日〕
神から見た「主の祈り」(2004-10-04)
「天にましますわれらの父よ」 神「はい?」 — へリング牧師は、ジョークのような設定で深い問題を提示した。 〔最終更新: 2013年10月2日〕
「無断コピー以外」を禁止するライセンス(2004-10-04)
人間の心理的困難があまりに大きいようなので、 それに対抗するために、次のような新しいライセンス形態を思いつくほどだ。いわく…
妖精物語 3題(2005-07-02)
王様の赤いばらと白いばら。
「反辞書」の著者フレッド・レスラー(2009-02-03)
Urban Dictionary というサイトをご存じでしょうか。 ウィキペディアみたいな、でもそれよりずっと砕けた新語辞典…

お知らせ

<メールアドレス>